Mission Statement

The Mostoslavsky Lab is a basic science laboratory in the Section of Gastroenterology in the Department of Medicine at Boston University, affiliated with the Boston University Center for Regenerative Medicine (CReM). Our goal is to study human biology in normal and disease states, through the use of stem cells in general and pluripotent stem cells in particular, with two major focuses: gastrointestinal tract and immunity/inflammation. We believe that by discovering the mechanisms involved in stem cell self-renewal and differentiation we will be able to manipulate stem cell fate and use it as the basis for the correction of several diseases. Project areas in the lab focuses on the use of different stem cell populations, including embryonic stem cells, induced Pluripotent Stem (iPS) cells, hematopoietic stem cells and intestinal stem cells and their genetic manipulation by lentiviral vectors.

The Principal Investigator

Gustavo Mostoslavsky, MD PhD

Dr. Mostoslavsky

Dr. Mostoslavsky received his MD from the University of Tucuman in Argentina and his PhD from the Hebrew University in Jerusalem, Israel. His longstanding interest in basic science and regenerative medicine brought him to Harvard Medical School to pursue postdoctoral studies with stem cells and gene therapy. In 2008 Dr. Mostoslavsky opened his own lab at Boston University. He is currently Associate Professor of Medicine in the Section of Gastroenterology in the Department of Medicine at Boston University School of Medicine. His main research interests are stem cells, disease modeling, regenerative medicine, gene correction and lentiviral vectors as tools for gene transfer. Dr. Mostoslavsky is a founder and Co-Director of the BU Center for Regenerative Medicine (CReM).

Areas of Research

st8-d12

iPS cells

Our lab has a major interest in the study of induced Pluripotent Stem cells or iPS cells and the development of tools for their generation and characterization. Pioneering work by the laboratory of Dr. Yamanaka showed that fibroblasts transduced with retroviral vectors expressing four transcription factors, Oct4, Klf4, Sox2 and cMyc can be reprogrammed to become pluripotent stem cells that appear almost indistinguishable from ESC. In contrast to ESC, iPS cells are genetically identical to the individual from whom they are derived, raising the prospect of utilizing iPS cells for autologous cell based therapies without risk of rejection. We have previously developed a single lentiviral vector expressing a stem cell cassette, named STEMCCA, capable of generating iPS cells from post-natal fibroblasts and peripheral blood with very high efficiency that became the industry standard. We have also modified it to make it excisable and have used it to generate mouse and human iPS cells free of exogenous transgenes. We now aim at using iPS cells for disease modeling and study their potential for regenerative medicine.

iPS Cell Modeling of Intestinal Differentiation

One major focus of the lab is the utilization of iPS Cells for the study of intestinal differentiation with a particular interest in Colorectal Carcinoma (CRC). For this purpose we have generated iPSC from individuals suffering from FAP and Lynch Syndrome, the two most highly penetrant hereditary forms of CRC. We have established in the lab robust differentiation protocols for the induction of intestinal specification of these disease-specific iPSC. By studying the earlier events associated with intestinal differentiation comparing the normal and mutant cells we aim at discovering the basic mechanisms involved in tumor development in the gastrointestinal tract.

FAP-specific iPSC-derived intestinal organoids

FAP-specific iPSC-derived intestinal organoids

iPS Cell Modeling of Hepatic Differentiation

Several projects in the lab utilizes the liver differentiated progeny of iPSC to study genetic and infectious diseases affecting the liver. We have recently started a collaboration with the BU NEIDL to study Ebola virus entry and replication utilizing human iPSC-derived hepatocytes. By accessing primary human target cells we hope to establish a new paradigm in the use of iPSC-derived cells for infectious diseases.

iPSC_EBOV_05

Ebola viral inclusions in human iPSC-derived hepatocytes

iPS Cell Modeling of Immune / Inflammatory Cell Differentiation

Our long standing interest in the immune system now focuses in the utilization of iPSC-derived immune cells, including myeloid dendritic cells (mDCs), T cells and others as the basis to study several inflammatory diseases such as lupus erythematosus and the signaling cascade responsible for immune dysregulation. Dendritic cells play a central role in the modulation of the immune response and several inflammatory diseases have been shown to have altered mDC function. We aim at generating iPSC containing mutations in IRF5, Myd88, UNC93, TLRs and other relevant genes to test their role in mDC function compared to normal cells. Another project focuses on the generation of T regs and their potential use as modulators of immune tolerance in organ transplantation. We are combining novel engineered stromal cells with gene editing to explore a way to direct the differentiation of iPSC into hematopoietic progenitors and into a T cell/T reg lineage.

Hematopoietic Stem Cells

Hematopoietic Stem Cells (HSCs) are the most thoroughly characterized stem cell population in the body and their study has resulted in well established methods for their isolation, purification and reliable assays of HSC function. During the last few years we have substantially improved our ability to genetically manipulate HSCs using viral vectors for gene transfer. Despite these efforts, few genes are known to play a role in the processes of stem cell self-renewal and differentiation. Understanding the molecular mechanisms that govern those unique functions are crucial for developing the promise that stem cells hold for developmental biology and regenerative medicine.

3D Bioprinting

A novel exciting area of research in the lab is the use of human iPSC for the 3D reconstruction of liver and gut organs. For this purpose we have recently acquired a new 4th generation Bioplotter to test new biomaterials for the establishment of functional miniorgans combining differentiated cells, such as hepatocytes, intestinal and endothelial cells.

Lab Members

Sunny

Seonmi "Sunny" Park | Lab Manager

Seonmi Park is a lab manager in Mostoslavsky lab. She is from South Korea and she goes by Sunny. She joined the lab in 2011. Also, she has a small garden in CReM and is trying to be a green thumb.

Dar

Dar Heinze, MD PhD | Research Fellow

Dar Heinze is a research fellow from the Department of General Surgery. He received a BM in music from Wheaton College in Wheaton, IL and then received an MD PhD from the University of Texas Medical Branch in Galveston, TX. He then started residency in General Surgery at Boston Medical Center, where he completed two years of clinical training before starting a research fellowship in the Mostoslavsky Lab. He is broadly interested in immunotherapy and is currently working on the differentiation of T regulatory cells from iPS cells for potential use in tolerance induction in transplant recipients. In addition to these professional pursuits, Dar finds time for his family and several hobbies which include music, hiking, aquariums, and beekeeping.

Amalia

Amalia Capilla Villanueva, PhD | Postdoctoral Fellow

Amalia Capilla received her PhD from the University of Valencia (Spain) in Prof. Francesc Palau’s Laboratory, where she studied the genetic basis of celiac disease by characterizing new polymorphisms to improve its diagnosis. For her postdoctoral training, she moved to the field of developmental biology and worked at the Spanish National research Consortium in Ibo Galindo’s Lab to describe the relationship between tissue Planar Cell Polarity and the Notch pathway in Drosphila. She then joined Bill McGinnis Lab at University of California San Diego to investigate the role of NFkB pathway in re-epithelialization after wounding. In the Mostoslavsky’s Lab, she combines all these different backgrounds and uses iPS cells to improve our understanding of the mechanisms underlying human developmental biology, focusing on tissue regeneration to design novel treatments for intestinal diseases.

Whitney

Whitney Manhart | PhD Student
 

Whitney is a graduate student studying the pathogenesis of filoviruses in iPSC-derived hepatocytes from humans and fruit bats. She is originally from Ames, Iowa, where her family still resides, although she has been on the East Coast for many years. She graduated from Vassar College in 2015 with a BA in Biology and Geography. When she is not in the lab, she volunteers with Science Club for Girls, NEIDL outreach, and other organizations in the Boston area. Her greatest achievement in life thus far is trading her GRE study guides for a crockpot, although hopefully her research is more impressive someday.

Maggie

Maggie Baker | PhD Student
 

Maggie is interested in deriving conventional dendritic cells (cDCs) from iPS cells in order to better understand the genetic mechanisms underlying intrinsic dendritic cell dysfunction in autoimmune disease. Originally from the Chicago area and a Notre Dame alum, Maggie is a passionate Blackhawks and college football fan. When not in the lab, she enjoys hiking around the New England area, reading, and indulging her reality tv guilty pleasure, Dancing with the Stars.

Aditya

Aditya Mithal | MD PhD Student
 

Aditya Mithal is an MD PhD student who started in the lab in June 2017. He is broadly interested in immunology, and hopes to use iPSCs to model various aspects of inflammatory bowel disease. He is originally from New York City, and received a BA in Neuroscience from Johns Hopkins University in 2015. He started medical school at BUSM in the Fall of that year. Outside of the lab, he enjoys playing squash and tennis, watching sports, traveling, and spending time with family and friends.

Alumni

Cesar
Cesar Sommer, PhD
Postdoctoral Fellow
Andreia
Andreia G. Sommer, PhD
Lab Manager
Javi
Francisco Javier Molina Estevez (Javi), PhD
Postdoctoral Fellow
Dolly
Dolly Thomas
PhD Student
Patrick
Patrick Joynt
Undergraduate Student
Monica
Zhe (Monica) Zhong
Undergraduate Student
Ryan
Ryan Mulhern
Research Technician
Ivonne
Ivonne Ramirez
GI Research Fellow
Rubayath
Rubayath Mohsen
Summer student
Ana
Ana Lucia Hael, Biochemist
Visiting Scientist from Tucuman, Argentina
Karin
Karin Gustaffson
Visiting PhD Student from Uppsala University, Sweden
Juan
Juan Cruz Casabona, PhD
Visiting Scientist from Leloir Institute, Buenos Aires, Argentina
Wiktoria
Wiktoria Maria Suchorska, PhD
Visiting Scientist from Poznan, Poland
Veronica Furmento
Veronica Furmento, PhD
Visiting Scientist from Escobar, Argentina
Lucia Moro
Lucia Moro, PhD
Visiting Scientist from Escobar, Argentina

Life in the Lab

Gustavo Innovator of the Year

Dr. Gustavo Mostoslavsky is BU Innovator of the Year 2017

Read Bostonia article here

Lab at the Tissue culture

Intense tissue culture day at the Mostoslavsky lab

Left to Right: Gustavo, Sunny, Dar, Amalia and Aditya

Gustavo and lab BBQ

The Mostoslavsky Lab BBQ Summer 2017

Gustavo and Whitney

Poster Presentation

Gustavo and Whitney at Evans Day 2016

Gustavo and Dar

Poster Presentation

Gustavo and Dar at Evans Day 2016

Retreat

CReM Retreat 2016

Retreat

CReM Retreat 2016

Gustavo's Birthday

Gustavo's Birthday

Dr. Murphy, Dr. Kotton and Dr. Mostoslavsky

Co-Directors CReM

Dr. Murphy, Dr. Kotton and Dr. Mostoslavsky
The CReM Musketeers

Halloween Party

Halloween Party

Halloween Party

Halloween Party

Winter BBQ 2017

Winter BBQ 2017

The Argentinian Way

Mostoslavsky Lab

Mostoslavsky Lab

Winter BBQ 2017

BBQ at the CReM

Every year we enjoy a Summer and Winter BBQ together! YES, even with 3 feet of snow!