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    Chapter 29   

 Effi cient Transduction of Hematopoietic Stem Cells 
and Its Potential for Gene Correction 
of Hematopoietic Diseases 

           Dolly     T    homas     and     Gustavo     Mostoslavsky    

    Abstract 

   The ability to effi ciently transduce hematopoietic stem cells (HSC) represents a powerful methodology by 
which to study the role of specifi c genes on HSC function, as well as to broaden the potential of gene 
therapy for hematopoietic related diseases. While retroviruses have been used extensively to transduce a 
variety of cell types, HIV-derived lentiviruses prove superior for transduction of quiescent HSC due to 
their ability to infect non-dividing cells. Quality of lentiviral supernatants and starting cells are vital to 
obtain reproducible consistent results, and therefore, here we describe the production of concentrated 
lentiviral preparations, the purifi cation of HSC from total mouse bone marrow, and their transduction to 
obtain long-term HSC engraftment with persistent gene transfer and expression of the desired transgene.  

  Key words     Lentiviral transduction  ,   Gene Therapy  ,   Ultracentrifugation  ,   Hematopoietic stem cells  , 
  Hoechst 33342 staining  ,   Side population  ,   Artemis immunodefi ciency  

1       Introduction 

 For more than two decades, simple retroviruses were the most 
commonly used vector for gene transfer into mammalian cells [ 1 – 3 ]. 
However, the use of these vectors was limited mostly due to their 
ineffi cient capacity to induce gene transfer into non-dividing cells 
[ 4 ,  5 ]. The development of HIV-1 based lentiviral vectors bypassed 
this obstacle, allowing for effi cient transduction of a wide range of 
mammalian cells including their ability to integrate into the 
genome of non-proliferating cells [ 6 – 8 ]. This became integral 
especially in regards to gene transfer into quiescent HSC popula-
tions, fi rst demonstrated by Uchida et al. in 1998 [ 9 ]. Since then 
lentiviral gene transfer into purifi ed HSC populations has served as 
the basis for gaining insights into basic HSC biology as well as 
developing potential therapies for certain human hematological 
diseases [ 10 – 13 ]. One such example are our previous studies using 
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Artemis-defi cient mice [ 14 ], which present with symptoms of 
human RS-SCID (Radiosensitive Severe Combined Immuno defi -
ciency disorder), including severe lymphocyte defi ciency. Lentiviral 
mediated overexpression of the human Artemis gene within trans-
planted Artemis-defi cient HSC resulted in complete rescue of 
depleted B and T cell populations upon bone marrow transplanta-
tion [ 14 ]. 

 While the use of gene therapy in humans has been progressing 
cautiously, due to past concerns regarding viral integration, and 
the development of secondary insertional mutagenesis [ 15 ,  16 ], it 
is clear that the use of more sophisticated viral vectors, including 
self-inactivating lentiviral-based vectors such as those mentioned 
above [ 10 – 14 ] would be benefi cial for a safer more promising gene 
therapy approach to human disease. The rationale behind the success 
of gene therapy in the hematopoietic system lies in the use of viral 
vectors capable of effectively transducing quiescent HSC while at 
the same time limiting the risk of insertional mutagenesis. The 
viability and long-term engraftment of transplanted cells is depen-
dent upon maintenance of cellular integrity during transduction 
protocols. Herein resides a main obstacle with clear practical impli-
cations that has hampered progress in this fi eld (i.e., fi nding the 
right balance between achieving high effi ciency of transduction 
while maintaining the multipotential capacity of the transduced 
HSC). We here present a detailed protocol that allows fi rst the 
purifi cation of a highly homogenous HSC population, followed by 
the effi cient lentiviral transduction of these purifi ed HSC that pre-
serve their robust multipotent activities, in vitro and in vivo .  This 
methodology provides a basis for an optimized approach to use 
gene therapy in the clinical arena. 

 Self-inactivating lentiviral vectors are packaged via transfection 
of HEK-293T (293T) cells with the lentiviral backbone in conjunc-
tion with four helper constructs that provide in trans expression of 
enzymatic and structural viral proteins. Transfected 293T cells allow 
for the packaging and release of lentiviral particles, which are then 
collected and concentrated by ultracentrifugation to obtain viral 
titers that range between 5 × 10 8  and 5 × 10 9  viral particles per milli-
liter. Accurate titering of obtained viral particles is key to ensure 
proper MOI (multiplicity of infection = number of infectious parti-
cles per target cell). For HSC purifi cation, we use and describe here 
Hoechst 33342 staining of total bone marrow, named “SP method” 
fi rst described by Goodell et al. in 1996 [ 17 ]. Hoechst 33342 allows 
for a highly specifi c staining pattern based on the unique ability of 
HSC to exclude the Hoechst dye due to the actions of the ABCG2 
transporter, highly expressed by HSC [ 18 ]. Lastly, in order to further 
optimize levels of gene transfer, we include minimal prestimulation 
with low levels of SCF and TPO during viral transduction [ 13 ], both 
important to preserve HSC function as well as inducing HSC to 
become activated from a G0 to G1 state [ 19 ].  
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2     Materials 

      1.    TransIT ®  Transfection Reagent (Mirus Bio LLC).   
   2.    Transfection Media: Dulbecco’s Modifi ed Eagle Medium, 

10 % Fetal Bovine Serum, 100 μg/ml Primocin (InVivoGen).   
   3.    Helper Plasmids (HDM-Tat1b, pRC1-Rev1b, HDM-Hgpm2, 

HDM-Vsv-G) (Originally developed by the Harvard Gene 
Therapy Initiative).   

   4.    SW-28 Beckman Coulter Rotor.   
   5.    Ultra-Clear Centrifuge Tubes (Beckman Coulter).   
   6.    XL-100K Optima UltraCentrifuge (Beckman Coulter).   
   7.    15 cm tissue culture treated plates.   
   8.    150 ml Bottle Top Filter.   
   9.    5 ml Polypropylene tubes.   
   10.    293T cells.      

      1.    Purifi cation Media: Hanks Buffered Saline Solution, 2 % Fetal 
Bovine Serum, 1 % HEPES, 1 % Penicillin/Streptomycin. 
Store at 4 °C.   

   2.    Wash Media: Phosphate Buffered Saline (1X), 2 % Fetal Bovine 
Serum. Store at 4 °C.   

   3.    Hoechst 33342, Trihydrochloride, Trihydrate (100 mg) 
(Invitrogen). Resuspend in water to a concentration of 10 mg/ml. 
Aliquot and store at −20 °C.   

   4.    Ficoll-Paque™ PLUS (GE Healthcare).   
   5.    Beckman Coulter Z series Z2 Cell counter.   
   6.    BD FACSAria cell sorter or Beckman–Coulter MoFlo cell 

sorter. Multiple laser excitation is required. A 488-nm laser 
was used for propidium iodide excitation. Hoechst was excited 
using a 350-nm emission UV laser and its signal was collected 
with a 405/30 fi lter (Hoechst blue) and a 670/40 fi lter 
(Hoechst Red).   

   7.    FACS Media: Phosphate Buffered Saline (1X), 2 % Fetal Bovine 
Serum, 1 μg/ml Propidium Iodide. Prepare fresh and keep on ice.      

      1.    HSC Transduction Media: StemPro-34 (Invitrogen) (supple-
mented with  L -glutamine and Penicillin/Streptomycin), 
StemPro-34 Nutrient Supplement (Invitrogen), 10 ng/ml 
mouse SCF (R&D Systems), 100 ng/ml human TPO (R&D 
Systems), 5 μg/ml Polybrene (Hexadimethrine Bromide) 
(Sigma). Prepare fresh and keep at 4 °C.   

   2.    96-well round bottom plates.   
   3.    Concentrated lentiviral preparations (from Subheading  3.1 ).       

2.1  Lentiviral 
Preparation

2.2  Hematopoietic 
Stem Cell Purifi cation

2.3   Transduction
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3     Methods 

   Carry out all steps in this section in a tissue culture hood using 
proper aseptic tissue culture practices unless otherwise noted.

    1.    Prepare a 15 cm tissue culture treated plate of 293T cells to a 
confl uence of 85–90 % ( see   Note 1 ).   

   2.    Prepare the transfection mix by fi rst pipetting 2 ml of DMEM 
into a 5 ml polypropylene tube. While vortexing, add 112.5 μL 
of TransIT ®  transfection reagent to the DMEM drop by drop. 
Try to avoid the TransIT ®  hitting the sides of the tube. For 
each 15 cm plate of 293T cells, make one tube of transfection 
mix. Allow the transfection mix to incubate for 10 min at room 
temperature.   

   3.    During this incubation prepare the DNA mix, containing your 
lentiviral vector and the four helper plasmids. In a 1.5 ml 
eppendorf tube add 30 μg of lentiviral vector DNA. Mix with 
1.5 μg of HDM-Tat1b, 1.5 μg of pRC1-Rev1b, 1.5 μg of 
HDM-Hgpm2, and 3 μg of HDM-Vsv-G helper plasmids. 
Pipette gently to mix ( see   Note 2 ).   

   4.    Add the DNA mix to the transfection mix drop by drop while 
vortexing. Avoid hitting the sides of the tube. Incubate the 
mix for 15 min at room temperature.   

   5.    During this incubation, change the media of your 293T to 
13 ml of new transfection media ( see   Note 3 ).   

   6.    Add the Transfection/DNA mix to the cells GENTLY drop by 
drop. Gently push the plate front to back and then left to right 
several times to evenly distribute the mix to all the cells of the 
plate to ensure homogeneous effi cient transfection.   

   7.    Incubate the plate for 48 h in a 37 °C, 5 % CO 2  incubator. 
Do not change media during this time.   

   8.    To collect your viral supernatant, pipette up the media and 
transfer through a 150 ml bottle top fi lter into a sterile glass 
bottle (using vacuum). Keep the bottle at 4 °C for further 
collections. Replenish media with 15 ml of fresh transfection 
media. Repeat viral collection to a total of fi ve times. Pool all 
collections together and place fi ltered unconcentrated virus at 
4 °C until ready for concentration ( see   Note 4 ).   

   9.    To concentrate, make sure ultracentrifuge has been set to 4 °C 
and allow the inner chamber to cool. Once cooled, place an 
ultracentrifuge ultraclear tube into swinging bucket and weigh 
on a scale. Pipette viral supernatants into ultracentrifuge tubes. 
The weight of virus plus ultracentrifuge tube plus swinging 
bucket must be equivalent in order to keep the ultracentrifuge 
balanced during centrifugation ( see   Note 5 ).   

3.1  Transfection 
of 293T Cells for Viral 
Packaging/
Concentration of Viral 
Supernatants
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   10.    Once all samples have been loaded into the rotor, carefully 
place the rotor into the ultracentrifuge. Spin viral supernatants 
for 90 min at 36,000 ×  g  at 4 °C.   

   11.    Following centrifugation, carefully remove the ultracentrifuge 
tubes. Use an empty beaker for waste. In one swift motion, 
dump out the supernatant from the tube. Hold the tube facing 
down, until the last two drops fall from the edge of the tube. 
Turn the tube upright and immediately wrap paraffi n over the 
top of the tube ( see   Note 6 ).   

   12.    Place the tubes on ice for 2–3 h, then prepare 10 μL aliquots 
and store at −80 °C ( see   Note 7 ).   

   13.    Before using concentrated virus for transduction experiments 
it is necessary to titer all viruses by FACS or Southern blot 
( see   Note 8 ).      

       1.    Sacrifi ce mice according to IACUC approved protocols for 
your institution.   

   2.    Spray bottom half of mouse with 70 % ethanol to sterilize and 
wet fur. Harvest femurs and tibias and place them into 10 ml 
of cold wash buffer ( see   Note 9 ). Keep on ice until all bones 
have been collected.   

   3.    To harvest cells, pour all bones plus wash buffer into a mortar. 
Crush bones using a pestle to release the cells into solution 
( see   Note 10 ).   

   4.    Pipette the wash buffer plus cells up and down to break up any 
clumps and pass through a 70 μm cell strainer placed on top of 
a 50 ml centrifuge tube. Wash the mortar twice with 10 ml of 
cold wash buffer and pass all wash buffers through the fi lter.   

   5.    Centrifuge harvested cells at 244 ×  g  for 6 min at 4 °C. Pour 
out the supernatant and resuspend in 10 ml of Purifi cation 
media ( see   Note 11 ).   

   6.    Using a Coulter counter, count the number of total bone mar-
row cells. Set the parameters for size to include cells between 4 
and 10 μm. Calculate the total number of cells in your sample 
( see   Note 12 ).   

   7.    For Hoechst staining, resuspend cells to a concentration of 
4.5 × 10 6  cells/ml in a glass bottle and stain with 8.8 μg/ml of 
Hoechst 33342 for 90 min in a 37 °C water bath. Every 30 min 
swirl the bottle gently to avoid settling of the cells.   

   8.    After staining, transfer all cells to 50 ml centrifuge tubes and 
spin down at 244 ×  g  for 6 min at 4 °C. Pour out the supernatant 
and resuspend the cells in 5 ml of Purifi cation media.   

   9.    Pipette 5 ml of room temperature Ficoll-Paque Plus into a 15 ml 
centrifuge tube. Tilt the tube slightly and carefully (very slowly) 

3.2  Purifi cation 
of Hematopoietic 
Stem Cells by Hoechst 
33342 Staining
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layer the cells atop the Ficoll layer. Spin the cells at 805 ×  g  for 
20 min at 20 °C.   

   10.    Carefully pipette out the buffy coat and transfer to a clean 
15 ml centrifuge tube. Wash cells thoroughly with wash buffer 
by pipetting up and down several times. Spin at 244 ×  g  for 
6 min at 4 °C.   

   11.    Resuspend cells in 1.5–2 ml of FACS media. Filter cells through 
a 40 μm cell strainer directly into a 5 ml FACS polypropylene 
tube. Keep cells on ice to avoid Hoechst effl ux.   

   12.    Analyze and sort cells using a Beckman Coulter MoFlo cell 
sorter, BD FACSAria cell sorter or other (Fig.  1 ) ( see   Note 13 ). 
Sort cells directly to wells of a 96-well round bottom plate 
containing 50 μL of HSC Transduction Media.

             1.    To each well containing HSC from Subheading  3.2  (Fig.  2 ), 
carefully add the volume of virus that corresponds to 200–300 
MOI and mix gently by pipetting slowly to prevent bubbles 
( see   Notes 14  and  15 ).

       2.    Place cells at 37 °C, 5 % CO 2  overnight ( see   Note 16 ).       

4     Notes 

     1.    When transfecting 293T for viral production, it is imperative 
that the cells are at the proper confl uence. Improper confl u-
ence may affect transfection effi ciency ultimately leading to 
ineffi cient viral production. Although instructions from manu-
facturers of transfection reagents recommend to transfect cells 
at relatively low confl uence, for viral production we strongly 
recommend to perform transfection when cells are 85–90 % 
confl uent.   

3.3  Lentiviral 
Transduction of 
Purifi ed Hematopoietic 
Stem Cells

  Fig. 1    Gating  strategy for sorting HSC contained within the SP fraction of total bone marrow. Total bone marrow 
samples stained with Hoechst 33342 were depleted of red blood cells using a Ficoll density gradient. Remaining 
cells were analyzed using a MoFlo cell sorter (BD). Doublets and dead cells were excluded and the remaining 
Hoechst profi le was analyzed using a UV laser. Proper gating of SP cells is critical to ensure that the fi nal sorted 
population contains pure HSC. Understained samples or improper gating could result in the inclusion of progenitors 
and mature blood cell types within the purifi ed side population       
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   2.    All plasmid DNA used for viral production should be of high 
quality and purity (normally the DNA obtained from a 
Midiprep or Maxiprep purifi cation kit works well).   

   3.    293T cells can be easily detached from tissue culture treated 
surfaces, and therefore take extreme care when changing media 
in between viral collections. Slowly pipette media to the side 
wall of the plate in order to prevent loss of cells.   

   4.    We recommend collecting viral supernatants a total of fi ve 
times. To make collections easier, we suggest collecting virus 
twice on days 1 and 2 (starting 48 h after transfection) once in 
the morning and again in the evening (8–10 h apart). On the 
third day of collection, collect supernatant once in the morn-
ing, and proceed with concentration ( step 9 ). If necessary, 
unconcentrated viral particles can be stored at 4 °C for up to 
4–5 days without losing any viral activity.   

   5.    To limit chances of contaminating viral supernatants carry out 
this step next to a gas fl ame. To make balancing of samples 
easier, use a glass beaker. Zero the beaker and place the bucket 
plus ultracentrifuge tube inside the beaker. Then slowly add 
your viral supernatant to the tube.   

   6.    After centrifugation, you may or may not see a small loose 
white pellet. This is normal. Continue with aliquoting and 
titering your virus.   

   7.    This 2–3 h incubation allows for any virus to come down off the 
sides of the centrifuge tubes and also helps viral particles to come 
into solution. When aliquoting, we recommend making 10 μL 
working aliquots, and one to two tubes of larger volumes of 
virus that can be frozen and thawed to aliquot later on. We recom-
mend not to freeze–thaw viral aliquots more than twice.   

  Fig. 2    Lentiviral transduction of purifi ed HSC. ( a ) Purifi ed HSC were sorted directly to a 96-well round bottom 
plate for lentiviral transduction. ( b ) Transduced HSC were cultured in methylcellulose media for 7 days to allow 
for colony formation. Fluorescence microscopy image shows a FITC positive colony arising from a successfully 
transduced HSC. ( c ) Resulting methylcellulose cultures can be analyzed by FACS to determine the percentage 
of cells that are positive for the fl uorescent reporter in order to track effi ciency of transduction       
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   8.    To titer viruses by FACS, transduce HEK293 cells (6-well plate) 
(~90 % confl uent), with 0.01, 0.1, and 1 μL of concentrated 
virus. For Southern blot, transduce HEK293 with 1, 5, and 
10 μL of concentrated virus. Transduction is performed in 
1 ml of 10 % DMEM media containing 5 μg/ml Polybrene. 
Add the appropriate volume of virus. Swirl the plate gently to 
distribute virus. The next day, change media and leave cells for 
2 more days before analyzing cells by FACS, or for gDNA 
extraction (Fig.  3 ).

       9.    When harvesting long bones, be sure to remove excess muscle 
and tissues from the bone so that the extracted bones are as 
clean as possible. Improper dissection will result in contamina-
tion from other cell types and improper fi ltering of samples in 
 step 4  of the purifi cation process.   

   10.    When crushing harvested long bones, the cells from the marrow 
will be released into the wash solution and will start to turn pink 
or light red in color. Continue to crush until the bones appear 
white in color. You will see small red clumps in the solution, 
which is why we recommend pipetting up and down thoroughly 
in the following step.   

  Fig. 3    Titering of concentrated lentivirus by fl ow cytometry and southern blot. ( a ) Lentiviruses containing a GFP 
fl uorescent reporter titered by FACS. HEK293 cells were transduced with increasing volumes of concentrated 
lentiviral supernatants and cultured for 3 days prior to analysis by FACS. Titer of infectious particles per ml is 
calculated based on percentage of positive cells from the total of transduced cells. ( b ) Titering of lentiviral 
preparation by Southern blot.  Lane 1  represents uninfected HEK293 control,  Lane 2 : Copy number control 
(1 copy),  Lanes 3 ,  4 , and  5 : HEK293 transduced with 1 μL, 5 μL, or 10 μL of concentrated virus, respectively       
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   11.    Resuspend cells in 10 ml of purifi cation media/for every mouse 
used for bone marrow harvest. Cell counts are critical for 
Hoechst staining, and therefore we recommend resuspending 
total bone marrow cells in an appropriate volume to be sure 
that the coulter counter used in the following step gives an 
accurate count. For example, for cells from four mice, resus-
pend in 40 ml of purifi cation media.   

   12.    We normally obtain approximately 1 × 10 8  total bone marrow 
cells per mouse; however, this number will vary depending 
upon the age and health of your mice. Below is a sample calcu-
lation, which will help you determine the appropriate volume 
of purifi cation media and Hoechst 33342 required to obtain 
optimal staining. 

 For 1 × 10 7  cells/ml in 10 ml (total of 1 × 10 8  total cells): 
 1 × 10 8  total cells/4.5 × 10 6  cells/ml for staining = 22.2 ml 

of purifi cation media. 
 For staining: Take 10 ml of your cells + 12.2 ml of purifi cation 

media + 22.2 μl of Hoechst 33342 (8.8 mg/ml 1,000X stock).   
   13.    HSC contained within the side population account for only 

0.05–0.1 % of the total bone marrow.   
   14.    If your viral aliquots do not appear clean or you suspect the 

presence of debris (which can interfere with transduction effi -
ciencies), do a quick spin before adding the virus to your cells.   

   15.    Alternatively additional spinfection of cells with virus for 2 h at 
800 ×  g  at 37 °C, may increase effi ciency of transduction. 
For spinfection, spin cells in 100 μl of HSC transduction media 
and add double the volume of virus as used in 50 μl. Then leave 
cells overnight as in  step 2 . The increased volume of media 
maintains cell viability during centrifugation.   

   16.    The next day transduced HSC are ready to be used for in vitro 
assays such as methylcellulose colony forming unit assays or for 
in vivo transplant experiments. For lentiviruses containing a 
fl uorescent reporter, allow for up to 3 days to observe reporter 
expression.         
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